
Week 12 - Friday



 What did we talk about last time?
 Sorting
 Insertion sort
 Merge sort













 Pros:
 Best and average case running time of

O(n log n)
 Very simple implementation
 In-place
 Ideal for arrays

 Cons:
 Worst case running time of O(n2)
 Not stable



1. Pick a pivot
2. Partition the array into a left half smaller than the pivot and a 

right half bigger than the pivot
3. Recursively, quicksort the left half
4. Recursively quicksort the right half



 Input: array, index, left, right
 Set pivot to be array[index]
 Swap array[index] with array[right]
 Set index to left
 For i from left up to right – 1
 If array[i] ≤ pivot
▪ Swap array[i] with array[index]
▪ index++

 Swap array[index] with array[right]
 Return index //so that we know where pivot is



7

45

0

54

37

108

0

7

45

54

37

108

0

7

45

54

37

108

0

7

37

45

54

108

0

7

37

45

54

108

0

7

37

45

54

108

0

7

37

45

54

108



 Everything comes down to picking the right pivot
 If you could get the median every time, it would be great

 A common choice is the first element in the range as the pivot
 Gives O(n2) performance if the list is sorted (or reverse sorted)
 Why?

 Another implementation is to pick a random location
 Another well-studied approach is to pick three random locations 

and take the median of those three
 An algorithm exists that can find the median in linear time, but its 

constant is HUGE





 How many ways are there to order n items?
 n different things can go in the first position, leaving n – 1 to 

go in the second position, leaving n – 2 things to go into the 
third position…

 n (n – 1) (n – 2) … (2)(1) = n!
 In other words, there are n! different orderings, and we have 

to do some work to find the ordering that puts everything in 
sorted order



 Imagine a tree of decisions
 Some sequence of decisions will lead to a leaf of the tree
 Each leaf of the tree represents one of those n! orders

n!



 What is the smallest height the tree could have?
 A perfectly balanced binary tree with k leaves will have a height of log2(k)
 Since we have n! leaves, the smallest height will be log2(n!)

n!

log(n!)



 Any comparison-based sort is going to compare two values 
and make a decision based on that

 No matter what your algorithm is, if each comparison is a 
decision in the tree that leads you down to a sorted order, the 
best you can possibly do is log2(n!)

 But what is log2(n!)?
 I wish I could show you the math that backs this up, but 

Stirling's approximation says that log2(n!) is Θ(𝑛𝑛 log𝑛𝑛)
 Take away: No comparison-based sort can ever be better 

than Θ(𝑛𝑛 log𝑛𝑛) for worst-case running time







 Counting sort
 Radix sort
 Heaps
 Heapsort
 TimSort



 Work on Project 4
 Finish Assignment 6
 Due tonight by midnight!

 Read Section 2.4


	COMP 2100
	Last time
	Questions?
	Project 4
	Assignment 6
	Exam 2 Post Mortem
	Quicksort
	Quicksort
	Quicksort algorithm
	Partition algorithm
	Quicksort Example
	Quicksort issues
	Lower Bound on Sorting
	The fastest sort
	A different kind of tree
	Tree height
	Comparison-based sorts
	Quiz
	Upcoming
	Next time…
	Reminders

