Week 12 - Friday

COMP 2100




= What did we talk about last time?
= Sorting

= |nsertion sort

= Merge sort



Questions?




Project 4




Assignment 6




Exam 2 Post Mortem




Quicksort




= Pros:

= Best and average case running time of
O(n log n)
= Very simple implementation
= In-place
= |deal for arrays
= Cons:

= Worst case running time of O(n?)
= Not stable



1. Pick a pivot

>. Partition the array into a left half smaller than the pivot and a
right half bigger than the pivot

3. Recursively, quicksort the left half

.. Recursively quicksort the right half




= Input: array, index, left, right
= Set pivot to be array[index]
= Swap arraylindex] with array[right]
= Setindexto left
= Forifrom left up to right — 1
= If arrayli] < pivot
Swap array[i] with array[index]
index++
= Swap arraylindex] with array[right]
= Return index //so that we know where pivot is






Everything comes down to picking the right pivot

= If you could get the median every time, it would be great
A common choice is the first element in the range as the pivot

= Gives O(n?) performance if the list is sorted (or reverse sorted)

= Why?

Another implementation is to pick a random location

Another well-studied approach is to pick three random locations
and take the median of those three

An algorithm exists that can find the median in linear time, but its
constant is HUGE



Lower Bound on Sorting




= How many ways are there to order nitems?

= ndifferent things can go in the first position, leavingn—1to
go in the second position, leaving n— 2 things to go into the
third position...

=nn-1)(n-2)...(2)(2) =n!

= |[n other words, there are n! different orderings, and we have
to do some work to find the ordering that puts everything in

sorted order



= Imagine a tree of decisions
= Some sequence of decisions will lead to a leaf of the tree
= Each leaf of the tree represents one of those n! orders

TN TN

\ J
|

n!




= What is the smallest height the tree could have?
= A perfectly balanced binary tree with k leaves will have a height of log, (k)
= Since we have n! leaves, the smallest height will be log,(n!)

PN o log(m)

0000000000000 0000 0000000000000 000000000000 O0C0COCCVCVY

n!



= Any comparison-based sort is going to compare two values
and make a decision based on that

= No matter what your algorithm is, if each comparison is a
decision in the tree that leads you down to a sorted order, the
best you can possibly dois log,(n!)

= But whatis log,(n!)?

= | wish I could show you the math that backs this up, but
Stirling's approximation says that log,(n!) is @(n logn)

= Take away: No comparison-based sort can ever be better
than ®(nlogn) for worst-case running time






Upcoming




= Counting sort
= Radix sort

= Heaps

= Heapsort

= TimSort




= Work on Project 4
= Finish Assignment 6

= Due tonight by midnight!
= Read Section 2.4



	COMP 2100
	Last time
	Questions?
	Project 4
	Assignment 6
	Exam 2 Post Mortem
	Quicksort
	Quicksort
	Quicksort algorithm
	Partition algorithm
	Quicksort Example
	Quicksort issues
	Lower Bound on Sorting
	The fastest sort
	A different kind of tree
	Tree height
	Comparison-based sorts
	Quiz
	Upcoming
	Next time…
	Reminders

